direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×D8⋊C22, D8⋊4C23, C8.2C24, C4.7C25, Q16⋊4C23, D4.4C24, Q8.4C24, SD16⋊3C23, C24.131D4, M4(2)⋊6C23, (C2×C8)⋊5C23, C4○D8⋊8C22, C4○D4⋊6C23, (C2×D8)⋊55C22, (C2×D4)⋊22C23, (C2×Q8)⋊22C23, C2.42(D4×C23), C4○(D8⋊C22), C8⋊C22⋊17C22, (C2×C4).613C24, (C22×C8)⋊27C22, (C2×Q16)⋊59C22, C23.357(C2×D4), C4.174(C22×D4), (C22×C4).538D4, (C2×SD16)⋊61C22, (C22×D4)⋊66C22, C8.C22⋊17C22, (C22×M4(2))⋊8C2, (C22×Q8)⋊70C22, C22.54(C22×D4), (C2×M4(2))⋊58C22, (C23×C4).624C22, (C22×C4).1224C23, C4○(C2×C8⋊C22), C4○(C2×C8.C22), (C2×C4○D8)⋊29C2, (C2×C4)○(C8⋊C22), (C2×C8⋊C22)⋊37C2, (C2×C4).669(C2×D4), (C2×C4)○(C8.C22), (C2×C4○D4)⋊78C22, (C22×C4○D4)⋊27C2, (C2×C8.C22)⋊37C2, (C2×C4)○(C2×C8.C22), SmallGroup(128,2312)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×D8⋊C22
G = < a,b,c,d,e | a2=b8=c2=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, dbd=b5, be=eb, dcd=ece=b4c, de=ed >
Subgroups: 1148 in 742 conjugacy classes, 428 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C24, C22×C8, C2×M4(2), C2×D8, C2×SD16, C2×Q16, C4○D8, C8⋊C22, C8.C22, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C22×M4(2), C2×C4○D8, C2×C8⋊C22, C2×C8.C22, D8⋊C22, C22×C4○D4, C2×D8⋊C22
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, C25, D8⋊C22, D4×C23, C2×D8⋊C22
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 8)(3 7)(4 6)(10 16)(11 15)(12 14)(17 21)(18 20)(22 24)(25 29)(26 28)(30 32)
(1 21)(2 18)(3 23)(4 20)(5 17)(6 22)(7 19)(8 24)(9 29)(10 26)(11 31)(12 28)(13 25)(14 30)(15 27)(16 32)
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 31)(18 32)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)
G:=sub<Sym(32)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,21)(18,20)(22,24)(25,29)(26,28)(30,32), (1,21)(2,18)(3,23)(4,20)(5,17)(6,22)(7,19)(8,24)(9,29)(10,26)(11,31)(12,28)(13,25)(14,30)(15,27)(16,32), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,21)(18,20)(22,24)(25,29)(26,28)(30,32), (1,21)(2,18)(3,23)(4,20)(5,17)(6,22)(7,19)(8,24)(9,29)(10,26)(11,31)(12,28)(13,25)(14,30)(15,27)(16,32), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,8),(3,7),(4,6),(10,16),(11,15),(12,14),(17,21),(18,20),(22,24),(25,29),(26,28),(30,32)], [(1,21),(2,18),(3,23),(4,20),(5,17),(6,22),(7,19),(8,24),(9,29),(10,26),(11,31),(12,28),(13,25),(14,30),(15,27),(16,32)], [(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,31),(18,32),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | ··· | 2Q | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4R | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D8⋊C22 |
kernel | C2×D8⋊C22 | C22×M4(2) | C2×C4○D8 | C2×C8⋊C22 | C2×C8.C22 | D8⋊C22 | C22×C4○D4 | C22×C4 | C24 | C2 |
# reps | 1 | 1 | 4 | 4 | 4 | 16 | 2 | 7 | 1 | 4 |
Matrix representation of C2×D8⋊C22 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 13 | 13 |
0 | 0 | 4 | 8 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 15 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 8 | 0 | 0 |
0 | 0 | 13 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 8 |
0 | 0 | 0 | 0 | 13 | 13 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 8 | 0 | 0 |
0 | 0 | 13 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 9 |
0 | 0 | 0 | 0 | 4 | 4 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,8,13,0,0,4,13,0,0,0,0,0,13,0,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,15,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,4,13,0,0,0,0,8,13,0,0,0,0,0,0,4,13,0,0,0,0,8,13],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,4,13,0,0,0,0,8,13,0,0,0,0,0,0,13,4,0,0,0,0,9,4] >;
C2×D8⋊C22 in GAP, Magma, Sage, TeX
C_2\times D_8\rtimes C_2^2
% in TeX
G:=Group("C2xD8:C2^2");
// GroupNames label
G:=SmallGroup(128,2312);
// by ID
G=gap.SmallGroup(128,2312);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,-2,477,1430,248,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d=b^5,b*e=e*b,d*c*d=e*c*e=b^4*c,d*e=e*d>;
// generators/relations